Research on Polarized Multi-Spectral System and Fusion Algorithm for Remote Sensing of Vegetation Status at Night

Author:

Li SiyuanORCID,Jiao Jiannan,Wang Chi

Abstract

The monitoring of vegetation via remote sensing has been widely applied in various fields, such as crop diseases and pests, forest coverage and vegetation growth status, but such monitoring activities were mainly carried out in the daytime, resulting in limitations in sensing the status of vegetation at night. In this article, with the aim of monitoring the health status of outdoor plants at night by remote sensing, a polarized multispectral low-illumination-level imaging system (PMSIS) was established, and a fusion algorithm was proposed to detect vegetation by sensing the spectrum and polarization characteristics of the diffuse and specular reflection of vegetation. The normalized vegetation index (NDVI), degree of linear polarization (DoLP) and angle of polarization (AOP) are all calculated in the fusion algorithm to better detect the health status of plants in the night environment. Based on NDVI, DoLP and AOP fusion images (NDAI), a new index of night plant state detection (NPSDI) was proposed. A correlation analysis was made for the chlorophyll content (SPAD), nitrogen content (NC), NDVI and NPSDI to understand their capabilities to detect plants under stress. The scatter plot of NPSDI shows a good distinction between vegetation with different health levels, which can be seen from the high specificity and sensitivity values. It can be seen that NPSDI has a good correlation with NDVI (coefficient of determination R2 = 0.968), PSAD (R2 = 0.882) and NC (R2 = 0.916), which highlights the potential of NPSDI in the identification of plant health status. The results clearly show that the proposed fusion algorithm can enhance the contrast effect and the generated fusion image will carry richer vegetation information, thereby monitoring the health status of plants at night more effectively. This algorithm has a great potential in using remote sensing platform to monitor the health of vegetation and crops.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Innovation Action Plan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3