Abstract
Unmanned aerial vehicles have been used widely in plant phenotyping and precision agriculture. Several critical challenges remain, however, such as the lack of cross-platform data acquisition software system, sensor calibration protocols, and data processing methods. This paper developed an unmanned aerial system that integrates three cameras (RGB, multispectral, and thermal) and a LiDAR sensor. Data acquisition software supporting data recording and visualization was implemented to run on the Robot Operating System. The design of the multi-sensor unmanned aerial system was open sourced. A data processing pipeline was proposed to preprocess the raw data and to extract phenotypic traits at the plot level, including morphological traits (canopy height, canopy cover, and canopy volume), canopy vegetation index, and canopy temperature. Protocols for both field and laboratory calibrations were developed for the RGB, multispectral, and thermal cameras. The system was validated using ground data collected in a cotton field. Temperatures derived from thermal images had a mean absolute error of 1.02 °C, and canopy NDVI had a mean relative error of 6.6% compared to ground measurements. The observed error for maximum canopy height was 0.1 m. The results show that the system can be useful for plant breeding and precision crop management.
Funder
National Institute of Food and Agriculture
Subject
General Earth and Planetary Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献