Monitoring the Recovery after 2016 Hurricane Matthew in Haiti via Markovian Multitemporal Region-Based Modeling

Author:

De Giorgi Andrea,Solarna DavidORCID,Moser GabrieleORCID,Tapete DeodatoORCID,Cigna FrancescaORCID,Boni GiorgioORCID,Rudari Roberto,Serpico Sebastiano Bruno,Pisani Anna Rita,Montuori AntonioORCID,Zoffoli Simona

Abstract

The aim of this paper is to address the monitoring of the recovery phase in the aftermath of Hurricane Matthew (28 September–10 October 2016) in the town of Jérémie, southwestern Haiti. This is accomplished via a novel change detection method that has been formulated, in a data fusion perspective, in terms of multitemporal supervised classification. The availability of very high resolution images provided by last-generation satellite synthetic aperture radar (SAR) and optical sensors makes this analysis promising from an application perspective and simultaneously challenging from a processing viewpoint. Indeed, pursuing such a goal requires the development of novel methodologies able to exploit the large amount of detailed information provided by this type of data. To take advantage of the temporal and spatial information associated with such images, the proposed method integrates multisensor, multisource, and contextual information. Markov random field modeling is adopted here to integrate the spatial context and the temporal correlation associated with images acquired at different dates. Moreover, the adoption of a region-based approach allows for the characterization of the geometrical structures in the images through multiple segmentation maps at different scales and times. The performances of the proposed approach are evaluated on multisensor pairs of COSMO-SkyMed SAR and Pléiades optical images acquired over Jérémie, in the aftermath of and during the three years after Hurricane Matthew. The effectiveness of the change detection results is analyzed both quantitatively, through the computation of accuracy measures on a test set, and qualitatively, by visual inspection of the classification maps. The robustness of the proposed method with respect to different algorithmic choices is also assessed, and the detected changes are discussed in relation to the recovery endeavors in the area and ground-truth data collected in the field in April 2019.

Funder

Agenzia Spaziale Italiana

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference94 articles.

1. The Recovery Observatory in Haiti in Short. Recovery Observatory Haiti by CEOShttps://www.recovery-observatory.org/drupal/en

2. Haiti RO for Hurricane Matthew Recovery|CEOS|Committee on Earth Observation Satelliteshttps://ceos.org/ourwork/workinggroups/disasters/recovery-observatory/haiti-ro-for-hurricane-matthew-recovery/

3. The Time Variable in Data Fusion: A Change Detection Perspective

4. A Markov random field model for classification of multisource satellite imagery

5. Markov Random Field Modeling in Image Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3