Mechanochemical Synthesis of Sustainable Ternary and Quaternary Nanostructured Cu2SnS3, Cu2ZnSnS4, and Cu2ZnSnSe4 Chalcogenides for Thermoelectric Applications

Author:

Nautiyal HimanshuORCID,Lohani KetanORCID,Mukherjee BinayakORCID,Isotta EleonoraORCID,Malagutti Marcelo Augusto,Ataollahi NargesORCID,Pallecchi IlariaORCID,Putti Marina,Misture Scott T.ORCID,Rebuffi LucaORCID,Scardi PaoloORCID

Abstract

Copper-based chalcogenides have emerged as promising thermoelectric materials due to their high thermoelectric performance, tunable transport properties, earth abundance and low toxicity. We have presented an overview of experimental results and first-principal calculations investigating the thermoelectric properties of various polymorphs of Cu2SnS3 (CTS), Cu2ZnSnS4 (CZTS), and Cu2ZnSnSe4 (CZTSe) synthesized by high-energy reactive mechanical alloying (ball milling). Of particular interest are the disordered polymorphs of these materials, which exhibit phonon-glass–electron-crystal behavior—a decoupling of electron and phonon transport properties. The interplay of cationic disorder and nanostructuring leads to ultra-low thermal conductivities while enhancing electronic transport. These beneficial transport properties are the consequence of a plethora of features, including trap states, anharmonicity, rattling, and conductive surface states, both topologically trivial and non-trivial. Based on experimental results and computational methods, this report aims to elucidate the details of the electronic and lattice transport properties, thereby confirming that the higher thermoelectric (TE) performance of disordered polymorphs is essentially due to their complex crystallographic structures. In addition, we have presented synchrotron X-ray diffraction (SR-XRD) measurements and ab initio molecular dynamics (AIMD) simulations of the root-mean-square displacement (RMSD) in these materials, confirming anharmonicity and bond inhomogeneity for disordered polymorphs.

Funder

Autonomous Province of Trento

US Department of Energy, Office of Science, Office of Basic Energy Sciences

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference84 articles.

1. Advances in Thermoelectrics;Mao;Adv. Phys.,2018

2. Thermoelectrics: From History, a Window to the Future;Beretta;Mater. Sci. Eng. R Rep.,2018

3. Thermoelectric Harvesters and the Internet of Things: Technological and Economic Drivers;Narducci;J. Phys. Energy,2019

4. Ioffe, A.F. (1957). Semiconductor Thermoelectrics and Thermoelectric Cooling, Infosearch Ltd.

5. Complex Thermoelectric Materials;Snyder;Nat. Mater.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3