Solvent Influence on the Magnetization and Phase of Fe-Ni Alloy Nanoparticles Generated by Laser Ablation in Liquids

Author:

Khairani Inna Y.,Lin QiyuanORCID,Landers Joachim,Salamon Soma,Doñate-Buendía CarlosORCID,Karapetrova Evguenia,Wende Heiko,Zangari Giovanni,Gökce BilalORCID

Abstract

The synthesis of bimetallic iron-nickel nanoparticles with control over the synthesized phases, particle size, surface chemistry, and oxidation level remains a challenge that limits the application of these nanoparticles. Pulsed laser ablation in liquid allows the properties tuning of the generated nanoparticles by changing the ablation solvent. Organic solvents such as acetone can minimize nanoparticle oxidation. Yet, economical laboratory and technical grade solvents that allow cost-effective production of FeNi nanoparticles contain water impurities, which are a potential source of oxidation. Here, we investigated the influence of water impurities in acetone on the properties of FeNi nanoparticles generated by pulsed laser ablation in liquids. To remove water impurities and produce “dried acetone”, cost-effective and reusable molecular sieves (3 Å) are employed. The results show that the Fe50Ni50 nanoparticles’ properties are influenced by the water content of the solvent. The metastable HCP FeNi phase is found in NPs prepared in acetone, while only the FCC phase is observed in NPs formed in water. Mössbauer spectroscopy revealed that the FeNi nanoparticles oxidation in dried acetone is reduced by 8% compared to acetone. The high-field magnetization of Fe50Ni50 nanoparticles in water is the highest, 68 Am2/kg, followed by the nanoparticles obtained after ablation in acetone without water impurities, 59 Am2/kg, and acetone, 52 Am2/kg. The core-shell structures formed in these three liquids are also distinctive, demonstrating that a core-shell structure with an outer oxide layer is formed in water, while carbon external layers are obtained in acetone without water impurity. The results confirm that the size, structure, phase, and oxidation of FeNi nanoparticles produced by pulsed laser ablation in liquids can be modified by changing the solvent or just reducing the water impurities in the organic solvent.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference68 articles.

1. The ubiquity of iron;Frey;ACS Chem. Biol.,2012

2. Current progress and future challenges in rare-earth-free permanent magnets;Cui;Acta Mater.,2018

3. Origin of the Invar effect in iron–nickel alloys;Abrikosov;Nature,1999

4. Magnetic vortex core observation in circular dots of permalloy;Shinjo;Science,2000

5. Tetrataenite-ordered FeNi, a new mineral in meteorites;Clarke;Am. Mineral.,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3