The Photocatalytic Conversion of Carbon Dioxide to Fuels Using Titanium Dioxide Nanosheets/Graphene Oxide Heterostructure as Photocatalyst

Author:

Karawek Apisit,Kittipoom Kittipad,Tansuthepverawongse Labhassiree,Kitjanukit Nutkamol,Neamsung Wannisa,Lertthanaphol Napat,Chanthara Prowpatchara,Ratchahat Sakhon,Phadungbut Poomiwat,Kim-Lohsoontorn PattarapornORCID,Srinives SiraORCID

Abstract

Carbon dioxide (CO2) photoreduction to high-value products is a technique for dealing with CO2 emissions. The method involves the molecular transformation of CO2 to hydrocarbon and alcohol-type chemicals, such as methane and methanol, relying on a photocatalyst, such as titanium dioxide (TiO2). In this research, TiO2 nanosheets (TNS) were synthesized using a hydrothermal technique in the presence of a hydrofluoric acid (HF) soft template. The nanosheets were further composited with graphene oxide and doped with copper oxide in the hydrothermal process to create the copper−TiO2 nanosheets/graphene oxide (CTNSG). The CTNSG exhibited outstanding photoactivity in converting CO2 gas to methane and acetone. The production rate for methane and acetone was 12.09 and 0.75 µmol h−1 gcat−1 at 100% relative humidity, providing a total carbon consumption of 71.70 µmol gcat−1. The photoactivity of CTNSG was attributed to the heterostructure interior of the two two−dimensional nanostructures, the copper−TiO2 nanosheets and graphene oxide. The nanosheets−graphene oxide interfaces served as the n−p heterojunctions in holding active radicals for subsequent reactions. The heterostructure also directed the charge transfer, which promoted electron−hole separation in the photocatalyst.

Funder

the individual development program (The MU talent), Faculty of Engineering, Mahidol University

Research Cess Fund from the Malaysia−Thailand Joint Authority

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3