Fluorometric Sensing and Detection of p-Nitroaniline by Mixed Metal (Zn, Ni) Tungstate Nanocomposite

Author:

Alharthi Fahad A.,Aldubeikl Hend Khalid,Alanazi Hamdah S.,Al-Nafaei Wedyan Saud,Hasan ImranORCID

Abstract

Aromatic amines are important chemical intermediates that hold an irreplaceable significance for synthesizing many chemical products. However, they may react with substances excreted from human bodies to generate blood poisoning, skin eczema, and dermatitis disease and even induce cancer-causing high risks to human health and the environment. Metal tungstates have been proven to be highly efficient materials for developing various toxic gases or chemical detection sensor systems. However, the major factors of the sensors, such as sensitivity, selectivity, stability, response, and recovery times, still need to be optimized for practical technological applications. In this work, Ni-doped ZnWO4 mixed metal tungstate nanocomposite material was synthesized by the hydrothermal method and explored as a sensor for the fluorometric determination of p-nitroaniline (p-NA). Transmission electron microscopy (TEM) was used for the elucidation of the optimized particle diameter. Scanning electron microscopy (SEM) was employed to observe the surface morphological changes in the material during the solid-state reactions. The vibration modes of as-prepared samples were analyzed using Fourier-transform infrared spectroscopy (FTIR). The chemical bonding and oxidation states of individual elements involved in material synthesis were observed using X-ray photoelectron spectroscopy (XPS). The PL activities of the metal tungstate nanoparticles were investigated for the sensing of p-nitroaniline (p-NA). The obtained results demonstrated that ZnNiWO4 was more effective in sensing p-NA than the other precursors were by using the quenching effect. The material showed remarkably high sensitivity towards p-NA in a concentration range of 25–1000 μM, and the limit of detection (LOD) value was found to be 1.93 × 10−8 M for ZnWO4, 2.17 × 10−8 M for NiWO4, and 2.98 × 10−8 M for ZnNiWO4, respectively.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3