Control of the Nanopore Architecture of Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore Widening

Author:

Jeong ChanyoungORCID,Jung Jeki,Sheppard Keith,Choi Chang-HwanORCID

Abstract

Control of the morphology and hierarchy of the nanopore structures of anodic alumina is investigated by employing stepwise anodizing processes, alternating the two different anodizing modes, including mild anodization (MA) and hard anodization (HA), which are further mediated by a pore-widening (PW) step in between. For the experiment, the MA and HA are applied at the anodizing voltages of 40 and 100 V, respectively, in 0.3 M oxalic acid, at 1 °C, for fixed durations (30 min for MA and 0.5 min for HA), while the intermediate PW is applied in 0.1 M phosphoric acid at 30 °C for different durations. In particular, to examine the effects of the anodizing sequence and the PW time on the morphology and hierarchy of the nanopore structures formed, the stepwise anodization is conducted in two different ways: one with no PW step, such as MA→HA and HA→MA, and the other with the timed PW in between, such as MA→PW→MA, MA→PW→HA, HA→PW→HA, and HA→PW→MA. The results show that both the sequence of the voltage-modulated anodizing modes and the application of the intermediate PW step led to unique three-dimensional morphology and hierarchy of the nanopore structures of the anodic alumina beyond the conventional two-dimensional cylindrical pore geometry. It suggests that the stepwise anodizing process regulated by the sequence of the anodizing modes and the intermediate PW step can allow the design and fabrication of various types of nanopore structures, which can broaden the applications of the nanoporous anodic alumina with greater efficacy and versatility.

Funder

Office of Naval Research (ONR) of the United States under the Young Investigator Program

MSIT

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3