Magnetic Studies of Superconductivity in the Ga-Sn Alloy Regular Nanostructures

Author:

Likholetova Marina V.ORCID,Charnaya Elena V.ORCID,Shevchenko Evgenii V.,Lee Min Kai,Chang Lieh-Jeng,Kumzerov Yurii A.,Fokin Aleksandr V.

Abstract

For applications of nanolattices in low-temperature nanoelectronics, the inter-unit space can be filled with superconducting metallic alloys. However, superconductivity under nanoconfinement is expected to be strongly affected by size-effects and other factors. We studied the magnetic properties and structure of the Ga-Sn eutectic alloy within regular nanopores of an opal template, to understand the specifics of the alloy superconductivity. Two superconducting transitions were observed, in contrast to the bulk alloy. The transitions were ascribed to the segregates with the structures of tetragonal tin and a particular gallium polymorph. The superconducting-phase diagram was constructed, which demonstrated crossovers from the positive- to the common negative-curvature of the upper critical-field lines. Hysteresis was found between the susceptibilities obtained at cooling and warming in the applied magnetic field.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3