Uranium Removal from Aqueous Solutions by Aerogel-Based Adsorbents—A Critical Review

Author:

Georgiou Efthalia,Raptopoulos GrigoriosORCID,Anastopoulos IoannisORCID,Giannakoudakis Dimitrios A.ORCID,Arkas MichaelORCID,Paraskevopoulou PatrinaORCID,Pashalidis IoannisORCID

Abstract

Aerogels are a class of lightweight, nanoporous, and nanostructured materials with diverse chemical compositions and a huge potential for applications in a broad spectrum of fields. This has led the IUPAC to include them in the top ten emerging technologies in chemistry for 2022. This review provides an overview of aerogel-based adsorbents that have been used for the removal and recovery of uranium from aqueous environments, as well as an insight into the physicochemical parameters affecting the adsorption efficiency and mechanism. Uranium removal is of particular interest regarding uranium analysis and recovery, to cover the present and future uranium needs for nuclear power energy production. Among the methods used, such as ion exchange, precipitation, and solvent extraction, adsorption-based technologies are very attractive due to their easy and low-cost implementation, as well as the wide spectrum of adsorbents available. Aerogel-based adsorbents present an extraordinary sorption capacity for hexavalent uranium that can be as high as 8.8 mol kg–1 (2088 g kg–1). The adsorption data generally follow the Langmuir isotherm model, and the kinetic data are in most cases better described by the pseudo-second-order kinetic model. An evaluation of the thermodynamic data reveals that the adsorption is generally an endothermic, entropy-driven process (ΔH0, ΔS0 > 0). Spectroscopic studies (e.g., FTIR and XPS) indicate that the adsorption is based on the formation of inner-sphere complexes between surface active moieties and the uranyl cation. Regeneration and uranium recovery by acidification and complexation using carbonate or chelating ligands (e.g., EDTA) have been found to be successful. The application of aerogel-based adsorbents to uranium removal from industrial processes and uranium-contaminated waste waters was also successful, assuming that these materials could be very attractive as adsorbents in water treatment and uranium recovery technologies. However, the selectivity of the studied materials towards hexavalent uranium is limited, suggesting further developments of aerogel materials that could be modified by surface derivatization with chelating agents (e.g., salophen and iminodiacetate) presenting high selectivity for uranyl moieties.

Funder

European Cooperation in Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference155 articles.

1. Removal of Metals by Biosorption: A Review;Veglio;Hydrometallurgy,1997

2. The Key Microbial Processes in the Removal of Toxic Metals and Radionuclides from the Environment;Gazso;Cent. Eur. J. Occup. Environ. Med. Hung.,2001

3. Selective Recovery of Uranium and Thorium Ions from Dilute Aqueous Solutions by Animal Biopolymers;Ishikawa;Biol. Trace Elem. Res.,2002

4. Distribution of Heavy Metals in Surface Water of Ranipet Industrial Area in Tamil Nadu, India;Govil;Environ. Monit. Assess,2008

5. Exposure Pathways and Health Effects Associated with Chemical and Radiological Toxicity of Natural Uranium: A Review;Brugge;Rev. Environ Health,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3