Abstract
The ultrafast water permeation property of graphene nanoplatelets (GNPs) synergically enhances the evaporation and water circulation processes in a micro heat pipe (MHP). An MHP is a promising phase-change heat-transfer device capable of transferring large amounts of heat energy efficiently. The hydrophobic, atomically smooth carbon walls of GNPs nanostructures provide a network of nanocapillaries that allows water molecules to intercalate frictionlessly among the graphene layers. Together with the attraction force of the oxygenated functional groups, a series of hydrophobic and hydrophilic surfaces are formed that significantly improve the water circulation rate. The intercalation of water molecules encourages the formation of water-thin film for film-wise evaporation. The effect of nano-wick thickness on the thermal performance of the MHP is investigated. A thinner GNP nano-wick is more favorable to film-wise evaporation while a thicker nano-wick promotes a higher water circulation rate from the condenser to the evaporator, leading to the existence of an optimal thickness. By benchmarking with the uncoated MHP, the thermal conductance of an MHP with a 46.9-µm GNP nano-wick manifests a maximum enhancement of 128%. This study provides insights on the feasible implementation of GNP nano-wicks into a highly efficient micro-scale electronics cooling device for environmental sustainability.
Funder
Ministry of Higher Education
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A review of emerging design and theoretical progress on vapor chamber for efficient thermal performance;International Journal of Heat and Mass Transfer;2024-10
2. Numerical Analysis of a Latent Thermal Energy System Assisted by Finned Heat Pipe;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29
3. Cavities in multilayer homo- and heterostructures;Physica E: Low-dimensional Systems and Nanostructures;2023-07