A Novel Data-Driven Fault Detection Method Based on Stable Kernel Representation for Dynamic Systems

Author:

Wang Qiang1ORCID,Peng Bo2,Xie Pu3ORCID,Cheng Chao1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China

2. Changchun Changguang Yuanchen Microelectronic Technology Co., Ltd., Changchun 130000, China

3. Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA

Abstract

With the steady improvement of advanced manufacturing processes and big data technologies, modern industrial systems have become large-scale. To enhance the sensitivity of fault detection (FD) and overcome the drawbacks of the centralized FD framework in dynamic systems, a new data-driven FD method based on Hellinger distance and subspace techniques is proposed for dynamic systems. Specifically, the proposed approach uses only system input/output data collected via sensor networks, and the distributed residual signals can be generated directly through the stable kernel representation of the process. Based on this, each sensor node can obtain the identical residual signal and test statistic through the average consensus algorithms. In addition, this paper integrates the Hellinger distance into the residual signal analysis for improving the FD performance. Finally, the effectiveness and accuracy of the proposed method have been verified in a real multiphase flow facility.

Funder

Key Programs of the Changchun City Science and Technology Bureau

Key Program of Education Department of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3