Robust Arm Impedocardiography Signal Quality Enhancement Using Recursive Signal Averaging and Multi-Stage Wavelet Denoising Methods for Long-Term Cardiac Contractility Monitoring Armbands

Author:

Escalona Omar1ORCID,Cullen Nicole1,Weli Idongesit1,McCallan Niamh1,Ng Kok Yew1ORCID,Finlay Dewar1

Affiliation:

1. School of Engineering, Ulster University, Belfast BT15 1AP, UK

Abstract

Impedance cardiography (ICG) is a low-cost, non-invasive technique that enables the clinical assessment of haemodynamic parameters, such as cardiac output and stroke volume (SV). Conventional ICG recordings are taken from the patient’s thorax. However, access to ICG vital signs from the upper-arm brachial artery (as an associated surrogate) can enable user-convenient wearable armband sensor devices to provide an attractive option for gathering ICG trend-based indicators of general health, which offers particular advantages in ambulatory long-term monitoring settings. This study considered the upper arm ICG and control Thorax-ICG recordings data from 15 healthy subject cases. A prefiltering stage included a third-order Savitzky–Golay finite impulse response (FIR) filter, which was applied to the raw ICG signals. Then, a multi-stage wavelet-based denoising strategy on a beat-by-beat (BbyB) basis, which was supported by a recursive signal-averaging optimal thresholding adaptation algorithm for Arm-ICG signals, was investigated for robust signal quality enhancement. The performance of the BbyB ICG denoising was evaluated for each case using a 700 ms frame centred on the heartbeat ICG pulse. This frame was extracted from a 600-beat ensemble signal-averaged ICG and was used as the noiseless signal reference vector (gold standard frame). Furthermore, in each subject case, enhanced Arm-ICG and Thorax-ICG above a threshold of correlation of 0.95 with the noiseless vector enabled the analysis of beat inclusion rate (BIR%), yielding an average of 80.9% for Arm-ICG and 100% for Thorax-ICG, and BbyB values of the ICG waveform feature metrics A, B, C and VET accuracy and precision, yielding respective error rates (ER%) of 0.83%, 11.1%, 3.99% and 5.2% for Arm-IG, and 0.41%, 3.82%, 1.66% and 1.25% for Thorax-ICG, respectively. Hence, the functional relationship between ICG metrics within and between the arm and thorax recording modes could be characterised and the linear regression (Arm-ICG vs. Thorax-ICG) trends could be analysed. Overall, it was found in this study that recursive averaging, set with a 36 ICG beats buffer size, was the best Arm-ICG BbyB denoising process, with an average of less than 3.3% in the Arm-ICG time metrics error rate. It was also found that the arm SV versus thorax SV had a linear regression coefficient of determination (R2) of 0.84.

Funder

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. (2023, May 14). World Health Organization (WHO), Cardiovascular Diseases (CADs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

2. Effectiveness of an impedance cardiography guided treatment strategy to improve blood pressure control in a real-world setting: Results from a pragmatic clinical trial;Wang;Open Heart,2021

3. Impedance cardiography: Recent applications and developments;Mansouri;BioMed Res.,2018

4. The technique of impedance cardiography: A review;Woltjer;Eur. Heart J.,1997

5. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations;Bernstein;J. Electr. Bioimpedance,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3