Effect of the Moso Bamboo Pyllostachys edulis (Carrière) J.Houz. on Soil Phosphorus Bioavailability in a Broadleaf Forest (Jiangxi Province, China)

Author:

Yang Dou123,Shi Fuxi13,Fang Xiangmin1,Zhang Ruoling13,Shi Jianmin4,Zhang Yang14

Affiliation:

1. Key Laboratory of National Forestry and Grassland Administration for the Protection and Restoration of Forest Ecosystem in Poyang Lake Basin, Jiangxi Agricultural University, Nanchang 330045, China

2. College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China

3. Matoushan Observation and Research Station of Forest Ecosystem, Zixi 335300, China

4. Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Nanchang 330045, China

Abstract

Moso bamboo (Phyllostachys edulis (Carrière) J.Houz.) is a fast-growing species that commonly invades neighboring broadleaf forests and has been widely reported in subtropical forest ecosystems. However, little is known about the effect on soil phosphorus (P) bioavailability and its potential influence factor during the P. edulis expansion. Here, the four soil P bioavailable fractions (i.e., CaCl2-P, Citrate-P, Enzyme-P, and HCl-P), acid phosphatase activity, iron and aluminum oxides (Fed and Ald), and soil total P pool at depths of 0–10 cm, 10–20 cm, and 20–40 cm were measured in three expanding interfaces (a broadleaf forest, a mixed bamboo–broadleaf forest, and a pure P. edulis forest) in subtropical forests of southern China. Regardless of soil depths, the CaCl2-P content was significantly lower in the mixed bamboo–broadleaf forest than the other two forest types, with contents ranging from 0.09 to 0.16 mg/kg, whereas the HCl-P content was significantly lower in the broadleaf forest, with contents ranging from 3.42 to 14.33 mg/kg, and the Enzyme-P content and acid phosphatase activity were notably lower in P. edulis forest with contents of 0.17–0.52 mg/kg and 68.66–74.80 μmol MUF released g−1 min−1, respectively. Moreover, the soil total P pool was enhanced in the mixed bamboo–broadleaf forest in 0–10 cm depth compared to broadleaf and P. edulis forests, with increases of 27.40% and 31.02%, respectively. The redundancy analysis showed that soil pH plays an important role in regulating soil P bioavailability during the P. edulis expansion (p < 0.01). From the above results, the invasion of P. edulis into broadleaf forests has resulted in soil P bioavailability and storage capacity. The results of this study suggest that when P. edulis invades broadleaf forests, it could affect the soil P bioavailability by elevating soil pH, which in turn drives and facilitates the completion of the expansion. This is important for understanding P cycling during the P. edulis forest expansion in subtropical regions.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Department of Science and Technology Project

Jiangxi “Double Thousand Plan”

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3