The Carbon Storage of Reforestation Plantings on Degraded Lands of the Red Soil Region, Jiangxi Province, China

Author:

Li Peng12,Liu Xiaojun3,Wang Chen1,Lu Yanjie4,Luo Laicong2,Tao Lingjian2,Xiao Tingqi1,Liu Yuanqiu12

Affiliation:

1. Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China

2. Jiangxi Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China

3. School of Agriculture, Ningxia University, Yinchuan 750021, China

4. Jiangxi Forestry Economic Development Center, Nanchang 330038, China

Abstract

To assess the effects of reforestation on ecosystem carbon storage, a long-term Forest Restoration Experimental Project (FREP) was established in 1991 on southern degraded red soil in Taihe County, Jiangxi Province, China. In this study, we selected five types of plantations: Schima superba plantation (SS), Liquidambar formosana plantation (LF), Pinus massoniana plantation (PM), Pinus elliottii plantation (PE), and P. elliottii and broadleaf mixed plantation (MEB). The unforested land was used as an experimental control check (CK). We aimed to assess the changes in carbon storage in plantations and the factors affecting them. Thirty years after reforestation, the ecosystem carbon storage of the five types of plantations was significantly higher than that of the control site, and there were also significant differences in the ecosystem carbon storage between the different plantation types (p < 0.05). The ecosystem carbon storage of SS, MEB, LF, PM, and PE were 211.71 Mg ha−1, 199.02 Mg ha−1, 160.96 Mg ha−1, 155.01 Mg ha−1, and 142.88 Mg ha−1, respectively. Compared to the CK, these values were increased by 436.8%, 404.6%, 308.1%, 293.1%, and 262.3%, respectively. The ecosystem carbon storage was significantly positively correlated with soil porosity, total nitrogen (TN), and stand density, and was significantly negatively correlated with pH, Pielou’s evenness index (PEI), and the Shannon–Weiner diversity index (SWDI). The soil water content (SWC), bulk density (BD), SWDI, and stand density can be used as indicators of the impact of reforestation plantings on ecosystem carbon storage. The research results has shown that reforestation plantings significantly increase ecosystem carbon storage, and that afforestation should be encouraged on degraded land.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3