ChatGPT as a New Tool to Select a Biological for Chronic Rhino Sinusitis with Polyps, “Caution Advised” or “Distant Reality”?

Author:

Sireci Federico1,Lorusso Francesco2,Immordino Angelo2,Centineo Manuela3,Gerardi Ignazio2,Patti Gaetano2ORCID,Rusignuolo Simona2,Manzella Riccardo2,Gallina Salvatore2,Dispenza Francesco2ORCID

Affiliation:

1. Otorhinolaryngology Section, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C), University of Palermo, Via del Vespro 129, 133, 90127 Palermo, Italy

2. Otorhinolaryngology Section, Biomedicine, Neuroscience and Advanced Diagnosics Department (BiND), University of Palermo, Via del Vespro 129, 133, 90127 Palermo, Italy

3. Digital Consultant Freelance, 90100 Palermo, Italy

Abstract

ChatGPT is an advanced language model developed by OpenAI, designed for natural language understanding and generation. It employs deep learning technology to comprehend and generate human-like text, making it versatile for various applications. The aim of this study is to assess the alignment between the Rhinology Board’s indications and ChatGPT’s recommendations for treating patients with chronic rhinosinusitis with nasal polyps (CRSwNP) using biologic therapy. An observational cohort study involving 72 patients was conducted to evaluate various parameters of type 2 inflammation and assess the concordance in therapy choices between ChatGPT and the Rhinology Board. The observed results highlight the potential of Chat-GPT in guiding optimal biological therapy selection, with a concordance percentage = 68% and a Kappa coefficient = 0.69 (CI95% [0.50; 0.75]). In particular, the concordance was, respectively, 79.6% for dupilumab, 20% for mepolizumab, and 0% for omalizumab. This research represents a significant advancement in managing CRSwNP, addressing a condition lacking robust biomarkers. It provides valuable insights into the potential of AI, specifically ChatGPT, to assist otolaryngologists in determining the optimal biological therapy for personalized patient care. Our results demonstrate the need to implement the use of this tool to effectively aid clinicians.

Funder

European Union–NextGenerationEU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3