Prediction of Cesarean Section for Intrapartum Fetal Compromise: A Multivariable Model from a Prospective Observational Approach

Author:

Novillo-Del Álamo Blanca1ORCID,Martínez-Varea Alicia1234ORCID,Nieto-Tous Mar1ORCID,Padilla-Prieto Carmen1,Modrego-Pardo Fernando1,Bello-Martínez de Velasco Silvia1,García-Florenciano María Victoria1,Morales-Roselló José12ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain

2. Department of Pediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain

3. Department of Medicine, CEU Cardenal Herrera University, 12006 Castellón de la Plana, Spain

4. Faculty of Health Sciences, Universidad Internacional de Valencia, 46002 Valencia, Spain

Abstract

Objective: A cesarean section for intrapartum fetal compromise (IFC) is performed to avoid potential damage to the newborn. It is, therefore, crucial to develop an accurate prediction model that can anticipate, prior to labor, which fetus may be at risk of presenting this condition. Material and Methods: To calculate a prediction model for IFC, the clinical, epidemiological, and ultrasonographic variables of 538 patients admitted to the maternity of La Fe Hospital were studied and evaluated using univariable and multivariable logistic regression analysis, using the area under the curve (AUC) and the Akaike Information Criteria (AIC). Results: In the univariable analysis, CPR MoM was the best single parameter for the prediction of CS for IFC (OR 0.043, p < 0.0001; AUC 0.72, p < 0.0001). Concerning the multivariable analysis, for the general population, the best prediction model (lower AIC) included the CPR multiples of the median (MoM), the maternal age, height, and parity, the smoking habits, and the type of labor onset (spontaneous or induction) (AUC 0.80, p < 0.0001). In contrast, for the pregnancies undergoing labor induction, the best prediction model included the CPR MoM, the maternal height and parity, and the smoking habits (AUC 0.80, p < 0.0001). None of the models included estimated fetal weight (EFW). Conclusions: CS for IFC can be moderately predicted prior to labor using maternal characteristics and CPR MoM. A validation study is pending to apply these models in daily clinical practice.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3