Influence of Deep Cryogenic Treatment on Microstructure and Properties of 7A99 Ultra-High Strength Aluminum Alloy

Author:

Gao Wenlin,Wang Xiangjie,Chen Junzhou,Ban Chunyan,Cui Jianzhong,Lu Zheng

Abstract

The hardness, toughness, wear resistance, and fatigue behavior of materials can be improved through a deep cryogenic treatment (DCT). During this treatment, low temperatures (−100 °C to −196 °C) are maintained and then increased to room or higher. In this work, an indirect-extrusion plate of 7A99 ultra-high strength aluminum alloy was subjected to a T6 (peak aging) treatment and a T6-DCT treatment. The influence of the T6-DCT treatment on the mechanical properties, grain morphologies, precipitates, and atom–cluster distribution was investigated via tensile testing, electron backscatter diffraction, transmission electron microscopy, and three-dimensional atom probe analysis. The tensile strength (maximum: 705 deep cryogenic treatment), yield strength (maximum: 678 MPa), and elongation (maximum: 14%) of the T6-DCT-treated alloy were higher than those of the T6-treated alloy. Moreover, the T6-DCT treatment resulted in (i) grain size refinement and increased uniformity of the microstructure (homogeneous distribution of η’-MgZn2- and η-phase precipitates), and (ii) reduced segregation degree of Zn, Mg, and Cu atoms in the matrix (fraction of small atom clusters (sizes: 10–20 nm, 20–50 nm) increased, fraction of large clusters (size: >1,000 nm) decreased). Therefore, DCT can refine the precipitates and increase the uniformity of the precipitate distribution, thereby improving the strength and plasticity of the alloy.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference16 articles.

1. Recent development in aluminium alloys for aerospace applications

2. Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy

3. Effect of quenching rate on aging behavior of 7085 aluminum alloy;Zhang;Trans. Nonferrous Met. Soc. China,2014

4. Recent development and prospects for giant plane aluminum alloys;Liu;Trans. Nonferrous Met. Soc. China,2010

5. Recently-Developed Aluminium Solutions for Aerospace Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3