Impact of Diverse Rainfall Patterns and Their Interaction on Soil and Water Loss in a Small Watershed within a Typical Low Hilly Region

Author:

Zhou Yuhao1,Shao Guangcheng1,Jiang Yanhua2

Affiliation:

1. College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China

2. Planning Office of Department of Water Resources of Jiangsu Province, Nanjing 210029, China

Abstract

Assessing the impact of varied rainfall patterns on soil and water loss within a hilly watershed over an extended temporal scope holds paramount importance in comprehending regional runoff and sediment traits. This study utilized continuous rainfall and sediment data spanning from 2013 to 2021, and the K-means clustering method was employed to analyze rainfall types. Subsequently, the rain-type characteristics underwent further analysis through LSD, and a multiple linear regression equation was formulated. The result showed that: within the Qiaotou small basin, rainfall, maximum rainfall intensity within 30 min (I30), and rainfall erosivity exhibited notable effects on sediment yield and loss. The water-sediment attributes of 305 rainfall events were characterized by rainfall below 100 mm, I30 of less than 35 mm/h, a runoff coefficient below 0.5, and sediment content under 0.6 g/L. According to the characteristics of different rainfall types and the degree of influence on water and sediment in small watersheds, 305 rainfall events in the basin were divided into three types by the K-means clustering analysis method: A (heavy rainfall, moderate rain), B (small rainfall, light rain), and C (medium rainfall, heavy rain). The most frequent rain type observed was B, followed by C, while A had the lowest frequency. Despite the lower intensity of B-type rainfall, it holds significant regional importance. Conversely, C-type rainfall, although intense and short, serves as the primary source of sediment production. The multiple regression equation effectively models both sediment yield modulus and flood peak discharge, exhibiting an R2 coefficient exceeding 0.80, signifying significance. This equation enables the quantitative calculation of pertinent indicators. Sediment yield modulus primarily relies on sediment concentration, runoff depth, and rainfall, while peak discharge is significantly influenced by runoff depth, sediment concentration, and I30. Furthermore, the efficacy of various soil and water conservation measures for flow and sediment reduction correlates with I30. Overall, the impact of different measures on reducing flow and sediment increases with a higher I30, accompanied by a reduced fluctuation range.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3