Comparative Analysis of Flood Prevention and Control at LID Facilities with Runoff and Flooding as Control Objectives Based on InfoWorks ICM

Author:

Cheng Xinyue1,Wang Hao1,Chen Bin2,Li Zhi1,Zhou Jinjun1

Affiliation:

1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China

2. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China

Abstract

Climate change and urbanization have led to an increase in the amount of water flowing into traditional drainage systems, which results in frequent urban flooding. Low–Impact Development (LID) facilities, with their distributed feature, are one of the important means to mitigate flooding and have been widely used. In this paper, based on integrated catchment management (ICM), we compare the abatement of runoff, flooding, and ponding under two durations of rainfall and eight different return periods with runoff as the control objective (RACO) and flooding as the control objective (FACO) for the deployment of LID facilities. The waterlogged area of FACO is higher by a range of 92.462 m2 to 24,124.39 m2 compared to RACO. Both percentage reduction of overflow volume and runoff volume tend to decrease gradually with the increase in the return period. For the percentage reduction of runoff volume per unit area, sometimes RACO is greater than FACO, and sometimes vice versa, while for the percentage reduction of overflow volume per unit area, the range where FACO exceeds RACO is between 0.29 to 10.95 (%/ha). The cost of FACO has decreased by 4.94% to 46.20% compared to RACO. This shows that FACO’s LID deployment method can fully utilize the capacity of LID facilities to mitigate inundation, reducing the cost of LID facilities to a certain extent.

Funder

Major Science and Technology Innovation Pilot Project for Water Resources Protection and Integrated-Saving Utilization

National Natural Science Foundation of China

Beijing Natural Science Foundation

R&D Program of Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3