Novel Orthodontic Cement Comprising Unique Imidazolium-Based Polymerizable Antibacterial Monomers

Author:

Lu Hui,Jin Xiaoming

Abstract

White spot lesions (WSLs) can develop quickly and compromise the successful outcome of the orthodontic treatment. Orthodontic bonding cement with the capability to prevent or mitigate WSLs could be beneficial, especially for patients with high risk of caries. This study explored novel mono- and di-imidazolium-based polymerizable antibacterial monomers and evaluated orthodontic cement compositions comprising such novel monomers. Their antibacterial potentials, mechanical properties, and shear bond strength (SBS) to bovine enamel were investigated. Statistical tests were applied to SBS and mechanical tests (one-way ANOVA and Tukey’s test). For antibacterial resins C (ABR-C) and E (ABR-E), their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against cariogenic Streptococcus mutans bacterial strain UA159 were found to be 4 μg/mL and 8 μg /mL, respectively. The loss of dry mass from completely demineralized dentin beams in buffer solutions pre-dipped into ABR-C and ABR-E resins is much less than that in control buffer (artificial saliva) only. For unfilled resins comprising up to 12 wt % ABR-C, no significant decreases in flexural strength or modulus were observed. For experimental cements incorporating 1–4 wt % ABR-C, there was no drastic compromise to the SBS to enamel except for 3 wt % ABR-C. Furthermore, their SBS was all comparable to the commercially available orthodontic cements. The ISO-22196 antimicrobial test against S. aureus showed significant levels of antibacterial effects—up to over 5 logs of microorganism reduction exhibited by ABR-C-containing experimental cements. The imidazolium-based polymerizable monomers could be utilized to functionalize orthodontic bonding cement with steady antibacterial activity and develop a potential strategy to counteract WSLs.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3