Thermal Time Constant CNN-Based Spectrometry for Biomedical Applications

Author:

Strąkowska Maria1,Strzelecki Michał1ORCID

Affiliation:

1. Institute of Electronics, Lodz University of Technology, 93-590 Lodz, Poland

Abstract

This paper presents a novel method based on a convolutional neural network to recover thermal time constants from a temperature–time curve after thermal excitation. The thermal time constants are then used to detect the pathological states of the skin. The thermal system is modeled as a Foster Network consisting of R-C thermal elements. Each component is represented by a time constant and an amplitude that can be retrieved using the deep learning system. The presented method was verified on artificially generated training data and then tested on real, measured thermographic signals from a patient suffering from psoriasis. The results show proper estimation both in time constants and in temperature evaluation over time. The error of the recovered time constants is below 1% for noiseless input data, and it does not exceed 5% for noisy signals.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Improved multiexponential transient spectroscopy by iterative deconvolution;Marco;IEEE Trans. Instrum. Meas.,2001

2. Continuous-time Model Identification from Sampled Data: Implementation Issues and Performance Evaluation;Garnier;Int. J. Control,2003

3. Ljung, L. (2009, January 6–8). Experiments with Identification of Continuous-Time Models. Proceedings of the 15th IFAC Symposium on System Identification, Saint-Malo, France.

4. Immitance Data Modelling via Linear Interpolation Techniques: A Classical Circuit Theory Approach;Yarman;Int. J. Circ. Theory Appl.,2004

5. An Appraisal of Gardner Transform-Based Method of Transient Multiexponential Signal Analysis;Jibia;Int. J. Comput. Theory Eng.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3