Spectral and Informational Analysis of Temperature and Chemical Composition of Solfatara Fumaroles (Campi Flegrei, Italy)

Author:

Tripaldi SimonaORCID,Telesca Luciano,Lovallo Michele

Abstract

Temperature and composition at fumaroles are controlled by several volcanic and exogenous processes that operate on various time-space scales. Here, we analyze fluctuations of temperature and chemical composition recorded at fumarolic vents in Solfatara (Campi Flegrei caldera, Italy) from December 1997 to December 2015, in order to better understand source(s) and driving processes. Applying the singular spectral analysis, we found that the trends explain the great part of the variance of the geochemical series but not of the temperature series. On the other hand, a common source, also shared by other geo-indicators (ground deformation, seismicity, hydrogeological and meteorological data), seems to be linked with the oscillatory structure of the investigated signals. The informational characteristics of temperature and geochemical compositions, analyzed by using the Fisher–Shannon method, appear to be a sort of fingerprint of the different periodic structure. In fact, the oscillatory components were characterized by a wide range of significant periodicities nearly equally powerful that show a higher degree of entropy, indicating that changes are influenced by overlapped processes occurring at different scales with a rather similar intensity. The present study represents an advancement in the understanding of the dominant driving mechanisms of volcanic signals at fumaroles that might be also valid for other volcanic areas.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference68 articles.

1. Volcanic, Magmatic and Hydrothermal Gases;Fischer,2015

2. Monitoring Active Volcanoes: The Geochemical Approach;Inguaggiato;Ann. Geophys.,2011

3. Chemical Composition of Volcanic Gases;Giggenbach,1996

4. Magmatic gas scrubbing: implications for volcano monitoring

5. Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3