Abstract
The aging properties of phenol-formaldehyde resin modified by bio-oil (BPF) were analyzed using ultraviolet (UV) weathering. The variations on bonding strength of BPF were measured, and the changes on microstructure, atomic composition and chemical structure of BPF were characterized by using a scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR), respectively. With the increase of aging time, the bonding strength decreased gradually, the resin surface became rougher and the O/C radio of resin surface increased. However, the loss rate of bonding strength of BPFs was 9.6–23.0% lower than that of phenol-formaldehyde resin (PF) after aging 960 h. The aging degree of BPF surfaces was smaller in comparison to PF at the same aging time. These results showed that the bio-oil had a positive effect on the anti-aging property. Analytical results revealed that with increasing the aging time, the XPS peak area of C–C/C–H decreased, while that of C=O and O–C=O increased. The intensity of methylene and ether bridges in NMR analysis decreased along with increasing the intensity of aldehydes, ketones, acids and esters. These results indicated that the aging mechanism of BPF was a process of the breakage of molecular chains and formation of oxygen-containing compounds.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献