Author:
Bi Hongjie,Xu Min,Ye Gaoyuan,Guo Rui,Cai Liping,Ren Zechun
Abstract
In this study, a series of heat-induced shape memory composites was prepared by the hot-melt extrusion and three-dimensional (3D) printing of thermoplastic polyurethane (TPU) using wood flour (WF) with different contents of EPDM-g-MAH. The mechanical properties, microtopography, thermal property analysis, and heat-induced shape memory properties of the composites were examined. The results showed that, when the EPDM-g-MAH content was 4%, the tensile elongation and tensile strength of the composites reached the maximum value. The scanning electron microscopy and dynamic mechanical analysis results revealed a good interface bonding between TPU and WF when the EPDM-g-MAH content was 4%. The thermogravimetric analysis indicated that the thermal stability of TPU/WF composites was enhanced by the addition of 4% EPDM-g-MAH. Heat-induced shape memory test results showed that the shape memory performance of composites with 4% EPDM-g-MAH was better than that of unmodified-composites. The composites’ shape recovery performance at a temperature of 60 °C was higher than that of the composites at ambient temperature. It was also found that, when the filling angle of the specimen was 45°, the recovery angle of the composites was larger.
Subject
Polymers and Plastics,General Chemistry
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献