Multifunctional Hybrid Composites with Enhanced Mechanical and Thermal Properties Based on Polybenzoxazine and Chopped Kevlar/Carbon Hybrid Fibers

Author:

Ghouti Hamid,Zegaoui Abdeldjalil,Derradji Mehdi,Cai Wan-an,Wang Jun,Liu Wen-bin,Dayo Abdul

Abstract

This work studied the structural, morphological, mechanical, and thermal properties of newly designed polymeric materials using high-performance hybrid fibers to reinforce the polybenzoxazine resins. To achieve this goal, hybrid fibers consisting of chopped Kevlar and carbon fibers were subjected to a silane surface treatment, incorporated into the resin matrix in various combinations, and then isothermally cured using the compression molding technique. The mechanical performances of the prepared composites were scrutinized in terms of bending and tensile tests. By way of illustration, the composites holding 20 wt % Kevlar fibers and 20 wt % carbon fibers accomplished a bending strength and modulus of 237.35 MPa and 7.80 GPa, respectively. Additionally, the same composites recorded a tensile stress and toughness of 77 MPa and 0.27 MPa, respectively, indicating an increase of about 234% and 32.8% when compared to the pristine resin’s properties. The thermogravimetric analysis denoted an excellent thermal resistance of the reinforced hybrid composites. Fourier transform infrared spectroscopy proved that the functional groups of the as-used coupling agent were effectively grafted on the external surfaces of the reinforcing systems, and further confirmed that the chemical reaction took place between the treated fibers and the polybenzoxazine matrix, although the scanning electron microscope showed a uniform dispersion and interfacial adhesion of the fibers within the resin matrix. In fact, the incorporation of treated fibers along with their good dispersion/adhesion could explain the progressive enhancement in terms of thermal and mechanical properties that were observed in the hybrid composites.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3