Multiscale Modification of Populus cathayana by Alkali Lignin Combined with Heat Treatment

Author:

Zhou Haizhen,Li Jingyu,Ma ErniORCID

Abstract

Chemical modification of wood with green modifiers is highly desirable for sustainable development. With the aim of enhancing the water resistance and dimensional stability of fast growing wood, modifications were conducted using renewable and toxicity-free industrial lignin combined with heat treatment. Poplar (Populus cathayana) samples first underwent impregnation with alkali lignin solution and were then subjected to heat treatment at 140–180 °C for two hours. The results indicated that the modified wood showed excellent leaching resistance. The alkali lignin treatment improved surface hydrophobicity and compression strength, and decreased moisture and water uptake, thereby reducing the dimensional instability of modified wood. These changes became more pronounced as the heat-treating temperature increased. Scanning electron microscopy, confocal laser scanning microscopy, and Fourier transform infrared spectroscopy evidenced that a multiscale improvement of the alkali lignin occurred in the cell lumen and cell wall of wood fibers and vessels, with small alkali lignin molecules reacting with the wood matrix. This study paves the way for developing an effective modification approach for fast growing wood, as well as promoting the reuse of industrial lignin for high-value applications, and improves the sustainable development of the forestry industry.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference31 articles.

1. Utilization of industrial waste lignin in polymer systems;Nandanwar;Int. J. Knowl. Eng.,2012

2. The pros and cons of lignin valorisation in an integrated biorefinery

3. Effects of UV weathering on surface properties of polypropylene composites reinforced with wood flour, lignin, and cellulose

4. Effect of kraft lignin and esterified lignin on the properties of thermoplastic starch

5. Physical properties of lignin added wood flourpolypropylene composites: A comparison of direct and solvent mixing techniques;Behrooz;Asian. J. Chem.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3