Abstract
Coarse-grained molecular dynamics simulations of a diblock copolymer consisting of a flexible and semi-flexible block in a dense array of parallel nanoposts with a square lattice packing were performed. The mutual interactions between the two blocks of the confined diblock chain were investigated through a comparison of their size, structure, and penetration among nanoposts with the corresponding separate chains. The geometry of a nanopost array was varied at constant post separation or at constant width of the passage between nanoposts. The size of a single interstitial volume was comparable to or smaller than the size of the diblock chain. A comparison of the blocks with their separate analogous chains revealed that the mutual interactions between the blocks were shielded by the nanoposts and, thus, the blocks behaved independently. At constant passage width, competitive effects of the axial chain extension in interstitial volumes and the lateral chain expansion among interstitial volumes led to a nonmonotonic behavior of the axial span. The position of the maximum in the span plotted against the filling fraction for a diblock chain was dictated by the semi-flexible block. The semi-flexible block penetrates among the nanoposts more readily and the expansion of the whole diblock copolymer is governed by the semiflexible block. The main findings were explained using the free energy arguments when an interstitial volume was approximated by a channel geometry and a passage aperture by a slit geometry. Detail knowledge of controlled conformational behavior in a compartmentalized environment can contribute to new processes in the storage and retrieval of information.
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献