Polarization Properties and Polarization Depth Profiles of (Cd:Zn)S/P(VDF-TrFE) Composite Films in Dependence of Optical Excitation

Author:

Engel Sebastian,Smykalla David,Ploss Bernd,Gräf StephanORCID,Müller Frank

Abstract

The influence of optical excitation intensity on the electrical, ferroelectric and pyroelectric properties of ferroelectric-semiconductor-composites was investigated. For this purpose, composite thin films consisting of poly(vinylidene fluoride-co-trifluoroethylene) and 10 vol % (Cd:Zn)S particles with a thickness of 34 µm were fabricated. The samples were used to measure the absolute pyrocoefficient and to determine the relative pyroelectric depth profile using Laser Intensity Modulated Method. It was shown that a polarization of the samples without an optical excitation at the utilized relatively small peak-to-peak voltages could not be verified by the Sawyer–Tower circuit and the measurement setup of the pyroelectric coefficient, respectively. Both remanent polarization and pyroelectric coefficients increased with increasing optical excitation intensity during poling as well as increasing peak-to-peak voltage. The pyrocoefficient shows a temporal decay in the first hours after poling. The specific heat and thermal conductivity or the thermal diffusivity are required for the calibration of the pyroelectric depth profile. Rule of mixture and photo-acoustic investigations proved that the thermal properties of the utilized composites do not differ significantly from those of the pristine polymer. Based on the pyroelectric depth profile which is proportional to the polarization profile, the existing “three phase model” has been extended to generate a replacement circuit diagram, explaining the local polarization due to the optical excitation dependency for both local resistivity and local field strength.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3