Boron Trifluoride Anionic Side Groups in Polyphosphazene Based Polymer Electrolyte with Enhanced Interfacial Stability in Lithium Batteries

Author:

Schmohl Sebastian,He Xuan,Wiemhöfer Hans-DieterORCID

Abstract

A modified polyphosphazene was synthesized using a mixed substitution at phosphorus consisting of 2-(2-methoxyethoxy)ethoxy side groups and anionic trifluoroborate groups. The primary goal was to increase the low lithium ion conductivities of the conventional lithium salt containing poly[2-(2-methoxyethoxy)ethoxy-phosphazene] (MEEP) by the immobilized anionic groups. As in previous studies, the mechanical stability was stabilized by UV induced radiation cross linking. By variation of the molar ratio between different side groups, mechanical and electrochemical properties are controllable. The polymer demonstrated large electrochemical stability windows ranging between 0 and 4.5 V versus the Li/Li+ reference. Total and lithium conductivities of 3.6 × 10−4 S·cm−1 and 1.8 × 10−5 S·cm−1 at 60 °C were revealed for the modified MEEP. When observed in special visualization cells, dendrite formation onset time and short-circuit time were determined as 21 h and 90 h, respectively, under constant current polarization (16 h and 65 h for MEEP, both with 15 wt % LiBOB), which hints to a more stable Li/polymer interface compared to normal MEEP. The enhanced dendrite suppression ability can be explained by the formation of a more conductive solid electrolyte interphase (SEI) and the existence of F-contained SEI components (such as LiF). With the addition of ethylene carbonate–dimethyl carbonate (EC/DMC) to form MEE-co-OBF3P gel polymer, both total and lithium conductivity were enhanced remarkably, and the lithium transference numbers reached reasonable values (σtotal = 1.05 mS·cm−1, σLi+ = 0.22 mS·cm−1, tLi+ = 0.18 at 60 °C).

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3