Nanocomposite Film Containing Fibrous Cellulose Scaffold and Ag/TiO2 Nanoparticles and Its Antibacterial Activity

Author:

Li Yanxiang,Tian Jessica,Yang Chuanfang,Hsiao Benjamin

Abstract

Cellulose is a natural polymer that is widely used in daily life, but it is susceptible to microorganism growth. In this study, a simple sol–gel technique was utilized to incorporate the cellulose scaffold with Ag/TiO2 nanoparticles. The morphology and crystal structure of the as-prepared Ag/TiO2/cellulose composite film were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. Antibacterial tests involving the use of Escherichia coli (E. coli) were carried out under dark and UV-light conditions to evaluate the efficiency of the Ag/TiO2/cellulose composite film in comparison with pristine cellulose paper and TiO2/cellulose composite film. The results indicated that the antibacterial activity of the Ag/TiO2/cellulose composite film outperformed all other samples, where the Ag content of 0.030 wt% could inhibit more than 99% of E. coli. This study suggests that finely dispersed nanocale Ag/TiO2 particles in the cellulose scaffold were effective at slowing down bacterial growth, and the mechanisms of this are also discussed.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3