Enhanced Adsorption of Bisphenol A from Aqueous Solution with 2-Vinylpyridine Functionalized Magnetic Nanoparticles

Author:

Li QiangORCID,Pan Fei,Li Wentao,Li Dongya,Xu Haiming,Xia Dongsheng,Li Aimin

Abstract

In this study, a novel 2-vinylpyridine functionalized magnetic nanoparticle (Mag-PVP) was successfully prepared. The prepared Mag-PVP was characterized by transmission electronic microscopy (TEM), Fourier transform infrared spectrophotometry (FT-IR), vibrating sample magnetometry (VSM) and thermogravimetric analysis (TGA), and was used for the adsorption of bisphenol A (BPA) from aqueous solutions. Mag-PVP, which is composed of Fe3O4 nanoparticles and poly divinylbenzene-2-vinylpyridine (with a thickness of 10 nm), exhibited magnetic properties (Ms = 44.6 emu/g) and thermal stability. The maximum adsorption capacity (Qm) of Mag-PVP for BPA obtained from the Langmuir isotherm was 115.87 mg/g at 20 °C, which was more than that of Fe3O4 nanospheres. In the presence of NaCl, the improved adsorption capacity of Mag-PVP was probably attributed to the screening effect of Mag-PVP surface charge and salting-out effect. In the presence of CaCl2 and humic acid (HA), the adsorption capacity of BPA decreased due to competitive adsorption. The adsorption of BPA by Mag-PVP increased slightly with the increase in pH from 3.0 to 5.0 and obtained the largest adsorption amount at pH 5.0, which was probably attributed to hydrogen bonding interactions. Moreover, in actual water, Mag-PVP still showed excellent adsorption performance in removing BPA. The high adsorption capacity and excellent reusability performance in this work indicated that Mag-PVP was an effective adsorbent for removing BPA from aqueous solutions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3