Carbon Nanotube-Based Organic Thermoelectric Materials for Energy Harvesting

Author:

Wang Xiaodong,Wang Hong,Liu Bing

Abstract

Carbon nanotubes (CNTs) have attracted much attention in developing high-performance, low-cost, flexible thermoelectric (TE) materials because of their great electrical and mechanical properties. Theory predicts that one-dimensional semiconductors have natural advantages in TE fields. During the past few decades, remarkable progress has been achieved in both theory and experiments. What is more important is that CNTs have shown desirable features for either n-type or p-type TE properties through specific strategies. Up to now, CNT‒polymer hybrids have held the record for TE performance in organic materials, which means they can potentially be used in high-performance TE applications and flexible electronic devices. In this review, we intend to focus on the intrinsic TE properties of both n-type and p-type CNTs and effective TE enhanced strategies. Furthermore, the current trends for developing CNT-based and CNT‒polymer-based high TE performance organic materials are discussed, followed by an overview of the relevant electronic structure‒TE property relationship. Finally, models for evaluating the TE properties are provided and a few representative samples of CNT‒polymer composites with high TE performance are highlighted.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3