Spatial Variation of b-Values and Their Relationship with the Fault Blocks in the Western Part of the Tibetan Plateau and Its Surrounding Areas

Author:

Hussain Hamid,Shuangxi Zhang,Usman Muhammad,Abid MuhammadORCID

Abstract

The Tibetan Plateau is considered to be one of the best natural laboratories for seismological research. This study sought to determine the spatial variations of b-values in the western part of the Tibetan Plateau, along with its surrounding areas, and the relation with the region’s fault blocks. The study region lies within 27–36.5° N, 78–89° E, and its fracture structure consists of strike-slip faults, as well as normal and thrust faults. A catalog record from 2009–2019 provided 4431 well-centered earthquakes that varied in magnitude from 0.1 to 8.2 M. The record was obtained from China’s seismological network, which is capable of recording low magnitudes to analyze b-values in the study area. The key findings of this study are as follows: (1) the range of earthquake depth in the region was 0–256 km, with the depth histogram showing a high frequency occurrence of shallow earthquakes in the area; (2) a time histogram showed that the major earthquakes occurred between 2014–2015, including the notable 2015 Gorkha earthquake (M = 8.2); (3) the b-value computed in the study area was 0.5 to 1.6, but in most of the study area, the b-value ranged from 0.6 to 0.9, which was a low to intermediate value, due to the presence of strike-slip faults in the central part of the study area and underthrusting in the region (south of the study area); and (4) a high b-value was found in the northwestern and eastern regions of the area, which proved that the area is prone to small earthquakes in the near future. The study also showed that the central and southern areas of the study region had low to intermediate b-values, meaning that it is prone to destructive and massive earthquakes with high magnitudes, such as the Gorkha earthquake (southern part of the study area). Low b-values revealed the degree of variation in rock properties, including large stress and strain, a fractured medium, a high deformation rate, and large faults. Small b-values were observed when the stress level was high in the investigated region, which might be used to predict a massive high-magnitude earthquake in the near future.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference37 articles.

1. Late Quaternary Activity of the Huashan Piedmont Fault and Associated Hazards in the Southeastern Weihe Graben, Central China

2. The Great Tangshan earthquake of 1976;Housner,2002

3. Late quaternary active features of the Ganzi-Yushu fault zone;Zhou;Earthq. Res. China,1996

4. The geologic evolution of the Tibetan plateau;Molnar;Am. Sci.,1989

5. Focal depths and mechanisms of shallow earthquakes in the Himalayan–Tibetan region

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3