Abstract
We study the Hilbert geometry induced by the Siegel disk domain, an open-bounded convex set of complex square matrices of operator norm strictly less than one. This Hilbert geometry yields a generalization of the Klein disk model of hyperbolic geometry, henceforth called the Siegel–Klein disk model to differentiate it from the classical Siegel upper plane and disk domains. In the Siegel–Klein disk, geodesics are by construction always unique and Euclidean straight, allowing one to design efficient geometric algorithms and data structures from computational geometry. For example, we show how to approximate the smallest enclosing ball of a set of complex square matrices in the Siegel disk domains: We compare two generalizations of the iterative core-set algorithm of Badoiu and Clarkson (BC) in the Siegel–Poincaré disk and in the Siegel–Klein disk: We demonstrate that geometric computing in the Siegel–Klein disk allows one (i) to bypass the time-costly recentering operations to the disk origin required at each iteration of the BC algorithm in the Siegel–Poincaré disk model, and (ii) to approximate fast and numerically the Siegel–Klein distance with guaranteed lower and upper bounds derived from nested Hilbert geometries.
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献