Electric DQ0 Library Model for Smart Grid Simulation

Author:

Pordomingo Víctor1,Merino Alejandro1ORCID,Rueda Almudena2ORCID

Affiliation:

1. Digitalization Department, University of Burgos, 09006 Burgos, Spain

2. Empresarios Agrupados Internacional, 28015 Madrid, Spain

Abstract

This paper addresses the pressing need for advanced simulation tools in electric phasor modeling and Smart Grid-Power to X systems. The motivation for this study stems from the critical importance of enhancing the balance between performance and the detailed dynamic representation of the system behavior in the simulations. The identified problem lies in the absence of a comprehensive framework that seamlessly integrates electric phasor DQ0 components into a multi-purpose object-oriented environment. The primary objective of this research is to develop and introduce two simulation libraries, centered around the core component, Electric_DQ0. These libraries aim to establish a robust phasor-based framework, incorporating essential electric components such as sources, loads, branches, power converters, and electric machines. The main goal is to enable dynamic frequency and voltage simulations, particularly focusing on transients in alternators and facilitating Voltage and Frequency Rate of Change analysis during power production-demand imbalances. The libraries were developed within a versatile object-oriented environment, employing the Electric_DQ0 components as the foundation. Through ports, these components transmit turning frequencies, supporting the simulation of dynamic frequency and voltage. The libraries are designed to comprehensively support monophasic and triphasic systems, encompassing delta and wye connections, with a flexible neutral configuration under both balanced and unbalanced conditions. A validation case is presented to demonstrate the tool’s ability to accurately reproduce predictions when compared to one of the most widely used electrical modeling tools in the market. A study case is also presented to evaluate the toolkit’s capabilities. The study sets a specific power demand to fulfill, utilizing diverse energy sources. The obtained results showcase the libraries’ effectiveness in addressing the identified problem, providing valuable insights into their performance and applicability in real-world scenarios. The results demonstrate the efficacy of the proposed framework, delivering accurate outcomes within a reduced execution time.

Funder

Ministerio de Ciencia e Innovación. Gobierno de España and European Union funds “NextGenerationEU"

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3