Energy Storage Dynamic Configuration of Active Distribution Networks—Joint Planning of Grid Structures

Author:

Luo Yiming1,Tian Peigen2,Yan Xin1,Xiao Xi2,Ci Song2,Zhou Qi3,Yang Yi3

Affiliation:

1. Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China

2. Department of Electrical Engineering, Tsinghua University, Beijing 10000, China

3. Electric Power Science Research Institute of State Grid Jiangsu Electric Power Company, Nanjing 210000, China

Abstract

The integration of distributed power generation mainly consisting of photovoltaic and wind power into active distribution networks can lead to safety accidents in grid operation. At the same time, climate change can also cause voltage fluctuations, direct current injection, harmonic pollution, frequency fluctuations, and other issues. To achieve economic and safe operation of the distribution network, an active distribution network-network planning model considering the dynamic configuration of energy storage system energy storage is constructed. This model focuses on energy storage batteries with high ease of use, high modularity, and strong mobility. The route location planning involving different load operating scenarios in spring, summer, autumn, and winter is constructed. The objective function includes the revenue from selling electricity in the distribution network, the expenditure on purchasing electricity in the distribution network, and the cost during the planned construction period. The constraints include three major constraints: distribution network operation, network topology, and energy storage system operation. Three numerical examples are set up to analyze the impact of energy storage system dynamic configuration on grid planning. The results confirmed the active distribution network-grid planning model for dynamic configuration of energy storage systems. Both Example 2 and Example 3 had 3 ESS configurations. Case 3 showed different access methods for ESS in different seasons. The access nodes for ESS in spring and winter were 4, 5, and 6, while the access nodes for summer and autumn were 3, 5, and 6. After applying the proposed method, the daily energy storage investment of commercial, residential, and industrial users gradually stabilized. The reliability of electricity consumption was improved, with an improvement rate of about 40%. The research has brought considerable economic benefits to distribution network operators. It has forward-looking academic value in the joint planning of grid structures and energy storage.

Funder

Science and Technology Project of SGCC

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3