From Segmentation to Classification: A Deep Learning Scheme for Sintered Surface Images Processing

Author:

Yang Yi12ORCID,Chen Tengtuo1ORCID,Zhao Liang3

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

2. Peng Cheng Laboratory, Shenzhen 518000, China

3. School of Software Technology, Dalian University of Technology, Dalian 116024, China

Abstract

Effectively managing the quality of iron ore is critical to iron and steel metallurgy. Although quality inspection is crucial, the perspective of sintered surface identification remains largely unexplored. To bridge this gap, we propose a deep learning scheme for mining the necessary information in sintered images processing to replace manual labor and realize intelligent inspection, consisting of segmentation and classification. Specifically, we first employ a DeepLabv3+ semantic segmentation algorithm to extract the effective material surface features. Unlike the original model, which includes a high number of computational parameters, we use SqueezeNet as the backbone to improve model efficiency. Based on the initial annotation of the processed images, the sintered surface dataset is constructed. Then, considering the scarcity of labeled data, a semi-supervised deep learning scheme for sintered surface classification is developed, which is based on pseudo-labels. Experiments show that the improved semantic segmentation model can effectively segment the sintered surface, achieving 98.01% segmentation accuracy with only a 5.71 MB size. In addition, the effectiveness of the adopted semi-supervised learning classification method based on pseudo-labels is validated in six state-of-the-art models. Among them, the ResNet-101 model has the best classification performance, with 94.73% accuracy for the semi-supervised strategy while only using 30% labeled data, which is an improvement of 1.66% compared with the fully supervised strategy.

Funder

National Science Foundation of China

Innovation Project of Qiyuan Laboratory

Equipment Shared Technology Pre-Research Foundation

National Defense Technology Basic Research Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3