Reinforcement Learning-Based Multi-Objective of Two-Stage Blocking Hybrid Flow Shop Scheduling Problem

Author:

Xu Ke12,Ye Caixia23,Gong Hua12,Sun Wenjuan12

Affiliation:

1. School of Science, Shenyang Ligong University, Shenyang 110159, China

2. Liaoning Key Laboratory of Intelligent Optimization and Control for Ordnance Industry, Shenyang 110159, China

3. School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China

Abstract

Consideration of upstream congestion caused by busy downstream machinery, as well as transportation time between different production stages, is critical for improving production efficiency and reducing energy consumption in process industries. A two-stage hybrid flow shop scheduling problem is studied with the objective of the makespan and the total energy consumption while taking into consideration blocking and transportation restrictions. An adaptive objective selection-based Q-learning algorithm is designed to solve the problem. Nine state characteristics are extracted from real-time information about jobs, machines, and waiting processing queues. As scheduling actions, eight heuristic rules are used, including SPT, FCFS, Johnson, and others. To address the multi-objective optimization problem, an adaptive objective selection strategy based on t-tests is designed for making action decisions. This strategy can determine the optimization objective based on the confidence of the objective function under the current job and machine state, achieving coordinated optimization for multiple objectives. The experimental results indicate that the proposed algorithm, in comparison to Q-learning and the non-dominated sorting genetic algorithm, has shown an average improvement of 4.19% and 22.7% in the makespan, as well as 5.03% and 9.8% in the total energy consumption, respectively. The generated scheduling solutions provide theoretical guidance for production scheduling in process industries such as steel manufacturing. This contributes to helping enterprises reduce blocking and transportation energy consumption between upstream and downstream.

Funder

Project of Liaoning BaiQianWan Talents Program

Science Research Foundation of Educational Department of Liaoning Province

Liaoning Province Xingliao Talents Plan project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3