Abstract
Dramatic changes of forests have strong influence on regional and global carbon cycles, biodiversity, and ecosystem services. Understanding dynamics of forests from local to global scale is crucial for policymaking and sustainable development. In this study, we developed an updating and object-based image analysis method to map forests in Northeast China using Landsat images from 1990 to 2015. The spatio–temporal patterns of forests were quantified based on resultant maps and geospatial analysis. Results showed that the percentage of forested area occupying the entire northeast China was more than 40%, about 94% of initial forest cover remained unchanged (49.37 × 104 km2) over the course of 25 years. A small net forest loss (1051 km2) was observed during 1990–2015. High forest gain (10,315 km2) and forest loss (9923 km2) both occurred from 2010 to 2015. At the provincial level, Heilongjiang demonstrated the highest rate of deforestation, with a net loss of 1802 km2 (0.89%). Forest changes along elevation, slope, and distance from settlements and roads were also investigated. Over 90% of forest changes occurred in plains and low mountain areas within the elevation of 200–1000 m and slope under 15°. The most dramatic forest changes can be found within the distance of 2000 m from settlements and roads. The reclamation of sloping land, construction of settlements and roads, and possible smallholder clearing contributed more to forest loss, while ecological projects and related government policies play an important role on afforestation and reforestation. These results can provide useful spatial information for further research on the driving forces and consequences of forest changes, which have critical implications for scientific conservation and management of forests.
Funder
National key research and development program of China
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献