Proxy-Based Sliding Mode Force Control for Compliant Grinding via Diagonal Recurrent Neural Network and Prandtl-Ishlinskii Hysteresis Compensation Model

Author:

Li Zhiyuan12ORCID,Sun Lei12ORCID,Liu Jidong12ORCID,Qin Yanding12ORCID,Sun Ning12ORCID,Zhou Lu12

Affiliation:

1. Tianjin Key Laboratory of Intelligent Robotics, College of Artificial Intelligence, Nankai University, Tianjin 300350, China

2. Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China

Abstract

Traditional industrial robots often face challenges in achieving a perfectly polished surface on a workpiece because of their high mechanical rigidity. The active compliance force control device installed at the robotic arm’s end enables high-precision contact force control between the grinding tool and the workpiece. However, the complex hysteresis nonlinearity between cylinder air pressure and output force, as well as various random disturbances during the grinding process, can affect the accuracy of the contact force and potentially impact the grinding effect of the workpiece, even causing irreversible damage to the surface of the workpiece. Given the complex random variation of cylinder output force in the actual grinding process, a rate-dependent hysteresis model based on diagonal recurrent neural network and Pradtl–Ishlinskii models named dRNN-PI is designed to compensate for the complex nonlinear hysteresis of the cylinder and calculate the desired air pressure to maintain a steady contact force on the workpiece. The proxy-based sliding mode control (PSMC) is utilized to quickly track the desired air pressure without overshooting. This paper also proves the controller’s stability using the Lyapunov-based methods. Finally, the accuracy of the proposed hysteresis compensation model and the effectiveness and robustness of the PSMC are verified by experiment results.

Funder

National Natural Science Foundation of China

Shenzhen Natural Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3