Hovering Flight of a Robotic Hummingbird: Dynamic Observer and Flight Tests

Author:

Wang Han1ORCID,Farid Yousef1ORCID,Wang Liang1ORCID,Garone Emanuele1ORCID,Preumont André1ORCID

Affiliation:

1. Department of Control Engineering and System Analysis, Université Libre de Bruxelles (ULB), CP. 165-55, 50 Av. F.D. Roosevelt, B-1050 Brussels, Belgium

Abstract

The paper reports on flight tests at hovering of the COLIBRI robot. After a short review of the control model and the stabilization strategy, two different approaches are considered for the attitude reconstruction from the MEMS Inertial Measurement Unit (IMU): the complementary filter and the full-state dynamic observer, implemented in a specially designed flight control board. It is shown that both strategies provide adequate stabilization at hovering in spite of the strong vibration excitation resulting from the flapping of the wings. Moreover, it is shown that the residual wandering due to noise, robot imperfection, etc., can be significantly reduced by a cascade control loop based on the axial and lateral velocities reconstructed by the full-state observer. Experiments show that this approach based on onboard measurements allows for a station keeping as good as that obtained with velocities reconstructed from an external tracking system. The paper also reports endurance tests conducted with two different robot configurations; the maximum flight time observed is 4 min 30 s.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3