Random Forest Model in the Diagnosis of Dementia Patients with Normal Mini-Mental State Examination Scores

Author:

Wang JieORCID,Wang Zhuo,Liu Ning,Liu Caiyan,Mao Chenhui,Dong Liling,Li Jie,Huang Xinying,Lei Dan,Chu Shanshan,Wang Jianyong,Gao Jing

Abstract

Background: Mini-Mental State Examination (MMSE) is the most widely used tool in cognitive screening. Some individuals with normal MMSE scores have extensive cognitive impairment. Systematic neuropsychological assessment should be performed in these patients. This study aimed to optimize the systematic neuropsychological test battery (NTB) by machine learning and develop new classification models for distinguishing mild cognitive impairment (MCI) and dementia among individuals with MMSE ≥ 26. Methods: 375 participants with MMSE ≥ 26 were assigned a diagnosis of cognitively unimpaired (CU) (n = 67), MCI (n = 174), or dementia (n = 134). We compared the performance of five machine learning algorithms, including logistic regression, decision tree, SVM, XGBoost, and random forest (RF), in identifying MCI and dementia. Results: RF performed best in identifying MCI and dementia. Six neuropsychological subtests with high-importance features were selected to form a simplified NTB, and the test time was cut in half. The AUC of the RF model was 0.89 for distinguishing MCI from CU, and 0.84 for distinguishing dementia from nondementia. Conclusions: This simplified cognitive assessment model can be useful for the diagnosis of MCI and dementia in patients with normal MMSE. It not only optimizes the content of cognitive evaluation, but also improves diagnosis and reduces missed diagnosis.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3