Determination of Vehicle Trajectory through Optimization of Vehicle Bounding Boxes Using a Convolutional Neural Network

Author:

Seong ,Song ,Yoon ,Kim ,Choi

Abstract

In this manuscript, a new method for the determination of vehicle trajectories using an optimal bounding box for the vehicle is developed. The vehicle trajectory is extracted using images acquired from a camera installed at an intersection based on a convolutional neural network (CNN). First, real-time vehicle object detection is performed using the YOLOv2 model, which is one of the most representative object detection algorithms based on CNN. To overcome the inaccuracy of the vehicle location extracted by YOLOv2, the trajectory was calibrated using a vehicle tracking algorithm such as a Kalman filter and intersection-over-union (IOU) tracker. In particular, we attempted to correct the vehicle trajectory by extracting the center position based on the geometric characteristics of a moving vehicle according to the bounding box. The quantitative and qualitative evaluations indicate that the proposed algorithm can detect the trajectories of moving vehicles better than the conventional algorithm. Although the center points of the bounding boxes obtained using the existing conventional algorithm are often outside of the vehicle due to the geometric displacement of the camera, the proposed technique can minimize positional errors and extract the optimal bounding box to determine the vehicle location.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designer Face Mask Detection Using Marker-Based Watershed Transform and YOLOv2 CNN Model;Artificial Intelligence: Theory and Applications;2024

2. Implementation of Intelligent Control Techniques Applied on a Line Follower Vehicle Controller;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

3. Speed Estimation of Vehicles Using Monocular Cameras;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

4. VEHICLE TRACKING AND SPEED ESTIMATION UNDER MIXED TRAFFIC CONDITIONS USING YOLOV4 AND SORT: A CASE STUDY OF HANOI;Transport Problems;2022-12-01

5. A Review of Real-Time Traffic Data Extraction Based on Spatio-Temporal Inference for Traffic Analysis Using UAV;Recent Advances in Transportation Systems Engineering and Management;2022-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3