MADANet: A Lightweight Hyperspectral Image Classification Network with Multiscale Feature Aggregation and a Dual Attention Mechanism

Author:

Cui Binge1,Wen Jiaxiang1ORCID,Song Xiukai2,He Jianlong2

Affiliation:

1. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China

Abstract

Hyperspectral remote sensing images, with their continuous, narrow, and rich spectra, hold distinct significance in the precise classification of land cover. Deep convolutional neural networks (CNNs) and their variants are increasingly utilized for hyperspectral classification, but solving the conflict between the number of model parameters, performance, and accuracy has become a pressing challenge. To alleviate this problem, we propose MADANet, a lightweight hyperspectral image classification network that combines multiscale feature aggregation and a dual attention mechanism. By employing depthwise separable convolution, multiscale features can be extracted and aggregated to capture local contextual information effectively. Simultaneously, the dual attention mechanism harnesses both channel and spatial dimensions to acquire comprehensive global semantic information. Ultimately, techniques such as global average pooling (GAP) and full connection (FC) are employed to integrate local contextual information with global semantic knowledge, thereby enabling the accurate classification of hyperspectral pixels. The results from the experiments conducted on representative hyperspectral images demonstrate that MADANet not only attains the highest classification accuracy but also maintains significantly fewer parameters compared to the other methods. Experimental results show that our proposed framework significantly reduces the number of model parameters while still achieving the highest classification accuracy. As an example, the model has only 0.16 M model parameters in the Indian Pines (IP) dataset, but the overall accuracy is as high as 98.34%. Similarly, the framework achieves an overall accuracy of 99.13%, 99.17%, and 99.08% on the University of Pavia (PU), Salinas (SA), and WHU Hi LongKou (LongKou) datasets, respectively. This result exceeds the classification accuracy of existing state-of-the-art frameworks under the same conditions.

Funder

National Natural Science Foundation of China

Shandong Province Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3