Evaluation of the CO2 Storage Capacity in Sandstone Formations from the Southeast Mesohellenic trough (Greece)

Author:

Christopoulou Marina A.,Koutsovitis PetrosORCID,Kostoglou NikolaosORCID,Paraskevopoulou ChrysothemisORCID,Sideridis AlkiviadisORCID,Petrounias PetrosORCID,Rogkala AikateriniORCID,Stock SebastianORCID,Koukouzas Nikolaos

Abstract

This study investigates the capability of the Southeast Mesohellenic Trough (SE MHT) sandstone formations to serve as a potential reservoir for CO2 storage in response to the emerging climate change issues by promoting environmentally friendly mineral sequestration applications. Sandstone samples, for the first time, were evaluated for their petrographic characteristics, mineral chemistry, geochemical properties, as well as their petrophysical and gas adsorption properties through tests. The sandstones were tested and classified into distinct groups. The most promising site to be considered for pilot CO2 storage testing is the Pentalofos Formation locality since its sandstones display specific mineral phases with the proper modal composition to conceivably react with injected CO2, leading to the development of newly formed and stable secondary mineral phases. The gas adsorption results are also more encouraging for sandstones from this sedimentary formation. All the measured UCS (uniaxial compressive strength), Ei (bending stiffness), and ν (Poisson’s ratio) results are above those dictated by international standards to perform CO2 storage practices safely. Furthermore, the specified targeted locality from the Pentalofos Formation holds the geological advantage of being overlaid by an impermeable cap-rock formation, making it suitable for deploying CO2 mineralization practices. The demarcated area could permanently store a calculated amount of ~50 × 105 tons of CO2 within the geological reservoir by reacting with the specified mineral phases, as specified through the proposed petrographic PrP index (potential reactive phases).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3