Hydrochemical Characterization of Groundwaters’ Fluid Flow through the Upper Mesozoic Carbonate Geothermal Reservoirs in the Geneva Basin: An Evolution more than 15,000 Years Long

Author:

Guglielmetti LucaORCID,Heidinger Michael,Eichinger Florian,Moscariello AndreaORCID

Abstract

Groundwaters circulating in Upper Mesozoic carbonates are of great interest for geothermal heat production and storage applications in the Geneva area. This study aims at providing new insights and proposing new interpretations about the mineral-water reactions and the fluid-flow paths mechanisms across the Geneva Basin (GB). Data from previous studies are combined and improved by new ones collected from cold and hot springs and geothermal exploration wells in 2018 and 2020 in the framework of the GEothermies program and HEATSTORE project. Major ions, trace elements, and the isotopes of Oxygen, Hydrogen, Sulfur, Strontium, and Carbo have been analysed and the results show that the sampled waters have a meteoric origin, the carbonate aquifers act as preferential host rocks for geothermal waters, and partial contribution from the Cenozoic sediments can be observed in some samples. The Jura Mountains and the Saleve Ridge are the main catchment areas and an evolution from a pure Ca-HCO3 footprint for the cold springs, to a Na > Ca-HCO3 and a Na-Cl composutions, is observed at the two geothermal wells. The residence time is in the order of a few years for the cold springs and reaches up to 15–20,000 years for the deep wells.

Funder

GEOTHERMICA ERA-Net, and Services Industriels de Genéve

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference83 articles.

1. Geothermal Fluids: Chemistry and Exploration Techniques;Nicholson,1993

2. Geothermal produced fluids: Characteristics, treatment technologies, and management options

3. Caractéristiques Géochimiques du Fluide Profond du Forage Genève;Vuataz,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3