Author:
Zuo Chenpeng,Wang Hetong,Pan Wenxiao,Zheng Siyuan,Xu Fei,Zhang Qingzhu
Abstract
Polychlorinated phenoxathiins (PCPTs), polychlorinated dibenzothiophenes (PCDTs), and polychlorinated thianthrenes (PCTAs) are sulfur analogues of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/DFs). Chlorothiophenols (CTPs) and chlorophenols (CPs) are key precursors for the formation of PCTA/PT/DTs, which can react with H or OH to form chloro(thio)phenoxy radical, sulfydryl/hydroxyl-substituted phenyl radicals, and (thio)phenoxyl diradicals. However, previous radical/radical PCTA/DT formation mechanisms in the literature failed to explain the higher concentration of PCDTs than that of PCTAs under the pyrolysis or combustion conditions. In this work, a detailed thermodynamics and kinetic calculations were carried out to investigate the pre-intermediate formation for PCTA/PT/DTs from radical/molecule coupling of the 2-C(T)P with their key radical species. Our study showed that the radical/molecule coupling mechanism explains the gas-phase formation of PCTA/PT/DTs in both thermodynamic and kinetic perspectives. The S/C coupling modes to form thioether-(thio)enol intermediates are preferable over the O/C coupling modes to form ether-(thio)enol intermediates. Thus, although the radical/molecule coupling of chlorophenoxy radical with 2-C(T)P has no effect on the PCDD/PT formation, the radical/molecule coupling of chlorothiophenoxy radical with 2-C(T)P plays an important role in the PCTA/PT formation. Most importantly, the pre-PCDT intermediates formation pathways from the couplings of sulfydryl/hydroxyl-substituted phenyl radical with 2-C(T)P and (thio)phenoxyl diradicals with 2-C(T)P are more favorable than pre-PCTA/PT intermediates formation pathways from the coupling of chlorothiophenoxy radical with 2-C(T)P, which provides reasonable explanation for the high PCDT-to-PCTA ratio in the environment.
Funder
National Natural Science Foundation of China
Shenzhen Science and Technology Research and Development Funds
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献