Roles of the GA-mediated SPL Gene Family and miR156 in the Floral Development of Chinese Chestnut (Castanea mollissima)

Author:

Chen GuosongORCID,Li Jingtong,Liu Yang,Zhang Qing,Gao Yuerong,Fang Kefeng,Cao Qingqin,Qin Ling,Xing Yu

Abstract

Chestnut (Castanea mollissima) is a deciduous tree species with major economic and ecological value that is widely used in the study of floral development in woody plants due its monoecious and out-of-proportion characteristics. Squamosa promoter-binding protein-like (SPL) is a plant-specific transcription factor that plays an important role in floral development. In this study, a total of 18 SPL genes were identified in the chestnut genome, of which 10 SPL genes have complementary regions of CmmiR156. An analysis of the phylogenetic tree of the squamosa promoter-binding protein (SBP) domains of the SPL genes of Arabidopsis thaliana, Populus trichocarpa, and C. mollissima divided these SPL genes into eight groups. The evolutionary relationship between poplar and chestnut in the same group was similar. A structural analysis of the protein-coding regions (CDSs) showed that the domains have the main function of SBP domains and that other domains also play an important role in determining gene function. The expression patterns of CmmiR156 and CmSPLs in different floral organs of chestnut were analyzed by real-time quantitative PCR. Some CmSPLs with similar structural patterns showed similar expression patterns, indicating that the gene structures determine the synergy of the gene functions. The application of gibberellin (GA) and its inhibitor (Paclobutrazol, PP333) to chestnut trees revealed that these exert a significant effect on the number and length of the male and female chestnut flowers. GA treatment significantly increased CmmiR156 expression and thus significantly decreased the expression of its target gene, CmSPL6/CmSPL9/CmSPL16, during floral bud development. This finding indicates that GA might indirectly affect the expression of some of the SPL target genes through miR156. In addition, RNA ligase-mediated rapid amplification of the 5′ cDNA ends (RLM-RACE) experiments revealed that CmmiR156 cleaves CmSPL9 and CmSPL16 at the 10th and 12th bases of the complementary region. These results laid an important foundation for further study of the biological function of CmSPLs in the floral development of C. mollissima.

Funder

Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3