Lack of Rhes Increases MDMA-Induced Neuroinflammation and Dopamine Neuron Degeneration: Role of Gender and Age

Author:

Costa Giulia,Porceddu Pier,Serra Marcello,Casu Maria,Schiano Valentina,Napolitano Francesco,Pinna AnnalisaORCID,Usiello Alessandro,Morelli Micaela

Abstract

Ras homolog enriched in striatum (Rhes) is a protein that exerts important physiological functions and modulates psychostimulant drug effects. On this basis, the object of this study was to assess 3,4-methylenedioxymethamphetamine (MDMA) effects on microglial (CD11b) and astroglial (GFAP) activation and on dopamine neuron degeneration (TH) in wild-type (WT) and Rhes knockout (KO) male and female mice of different ages. Motor activity was also evaluated. Adult (3 months) MDMA-treated mice displayed an increase in GFAP-positive cells in striatum (STR), whereas the substantia nigra pars compacta (SNc) was affected only in male mice. In these mice, the increase of CD11b was more extensive including STR, SNc, motor cortex (CTX), ventral tegmental area (VTA), and nucleus accumbens (NAc). MDMA administration also affected TH immunoreactivity in both STR and SNc of male but not female WT and Rhes KO mice. In middle-aged mice (12 months), MDMA administration further increased GFAP and CD11b and decreased TH immunoreactivity in STR and SNc of all mice. Finally, MDMA induced a higher increase of motor activity in adult Rhes KO male, but not female mice. The results show that Rhes protein plays an important role on MDMA-mediated neuroinflammation and neurodegeneration dependent on gender and age, and confirm the important role of Rhes protein in neuroinflammatory and neurodegenerative processes.

Funder

Regione Autonoma della Sardegna

PRIN 2015

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3